数一数Linux中有多少种线程同步策略-『Linux 源码解析(二)』
本来这篇应该是上周发的,拖延症又犯了 🙈
上一篇主要讨论了Linux 线程的调度算法
这篇来谈谈线程间的同步问题,暂时不包括IPC(InterProcess Communication)
问题,IPC 还是很有趣的。
有趣的事情就要慢慢品对吧,留到下次再来谈 🌚(主要准备不过来 hhh 太真实了)
PS: 以下解析的 Linux kernel 版本号为4.19.25
Thread synchronization
Motivation
为什么线程之间需要同步?
一个原因,同一个父进程下的所有子线程共享同一个 PC,同一个寄存器,同一个共享库(同一片天空)
所以当多个子线程同时对同一个变量进行操作的时候,就很有可能出现热点,甚至错误情况,这就是同步问题。
另外一个原因,很多时候线程之间执行情况实际上是有一定顺序的,下一个线程需要知道上一个线程有没有完成执行任务。
当然线程权限没有那么大,这些事情都是调度程序来做的,但线程有感知上一个线程完成与否的需求,这就是互斥问题。
所以,总的而言,线程同步主要解决的是同步互斥问题。
至于怎么解决,常见的套路主要是在栈中设立一个原子变量,通过抢占这个全部变量实现同步互斥。
具体而言,有互斥量mutex
, 锁Lock
, 读写锁rwlock
, 条件变量Condition
, 屏障Barrier
etc.
Souce code
这一部分代码比较多,有些还比较晦涩,Linux kernel4 以后的代码相较于 2.× 版本还有比较大的改动 然后在工程中,这一部分还是很有用的,比如所有线程安全都是基于互斥量这个概念实现的,再比如说写个 redis 锁 etc. 掌握这部分会对你维护多线程问题有所帮助!!!
Linux 的线程同步机制和 Nachos 中使用的机制(信号量,锁,条件变量)基本一致。采用了互斥量 mutex,条件变量,信号量,读写锁。
Mutex
Linux 下通过声明一个 Mutex 的类来实现互斥量的实现。另外还声明了一个ww_mutex
(wound/wait)来避免死锁
Linux kerenal 中关于 Mutex struct 的代码在<include/linux/mutex.h>
中
struct mutex {
atomic_long_t owner; // mutex 获得的owner ID
// 若==0, 则mutex未被占用;
// 若> 0, 则mutex被此ownerId占用,
// 只能由当前owner解mutex
spinlock_t wait_lock; // 自旋锁类型
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
struct optimistic_spin_queue osq; /* Spinner MCS lock */
#endif
struct list_head wait_list; // 等待队列
#ifdef CONFIG_DEBUG_MUTEXES
void *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
上面的 struct 用一个原子变量owner
来实现 mutex 的互斥效果, 这里已经和 kernel 2.× 版本不一样了。
当 owner 为 0 时,表示这个 mutex 还未被占用。当 mutex 不为零的时候,只能由 id == owner 的线程解除占用
另外定义了一个wait_list
用于存储被 sleep 的 thread
这部分代码和 nachos 中 Semaphore 的设计基本一致
而具体实现 mutex 的代码位于<kernel/locking/mutex.c>
中
__mutex_init
函数主要做一些变量声明和初始化的工作。
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
atomic_long_set(&lock->owner, 0); // init atomic 变量 owner
spin_lock_init(&lock->wait_lock); // init 自旋锁类型变量
INIT_LIST_HEAD(&lock->wait_list); // init 等待队列变量
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
osq_lock_init(&lock->osq);
#endif
debug_mutex_init(lock, name, key);
}
2
3
4
5
6
7
8
9
10
11
以加锁为例,调用的的是 mutex_lock 函数。
void __sched mutex_lock(struct mutex *lock)
{
might_sleep(); // 打印堆栈 debug sleep
if (!__mutex_trylock_fast(lock)) // atomic获得owner, 如果能
__mutex_lock_slowpath(lock); //
}
EXPORT_SYMBOL(mutex_lock);
#endif
2
3
4
5
6
7
8
9
其中,might_sleep()是一个全局 Linux API,主要用于在中断时候,debug 打印 context 堆栈,这个 API 在后面被广泛使用。
__mutex_trylock_fast(lock)
是一个去获取 lock 的 owner 的函数,如果能获取则返回 true
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{ww_acquire_ctx
unsigned long curr = (unsigned long)current;
unsigned long zero = 0UL;
if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) // 获取owner
return true;
return false;
}
2
3
4
5
6
7
8
如果有权限获取 owner 则
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
{
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); // 调用__mutex_lock
}
2
3
4
5
然后再嵌套调用,不知道是为了什么,写了那么多层(可能是有别的地方 复用到了)
static int __sched
__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
struct lockdep_map *nest_lock, unsigned long ip)
{
// 调用__mutex_lock_common
return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
}
2
3
4
5
6
7
然后就到了 Linux 真正处理 mock_lock 的地方
static __always_inline int __schedw
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,// lock TASK_UNINTERRUPTIBLE 0
struct lockdep_map *nest_lock, unsigned long ip, // NULL _RET_IP_
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) // NULL false
{
struct mutex_waiter waiter;
bool first = false;
struct ww_mutex *ww; // ww = wound/wait mutex 用于死锁检验
int ret;
might_sleep(); // 一样的去打印context的堆栈
ww = container_of(lock, struct ww_mutex, base); // 获得ww_mutex
if (use_ww_ctx && ww_ctx) { // mutet_lock进不到这个,ww_mutex_lock有可能进
if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) // ww_mutex获得的ctx和需要的ctx对比
return -EALREADY;
/*
* Reset the wounded flag after a kill. No other process can
* race and wound us here since they can't have a valid owner
* pointer if we don't have any locks held.
*/
if (ww_ctx->acquired == 0) // 如果ww_ctx没有被获得 则重设wounded 位
ww_ctx->wounded = 0;
}
preempt_disable(); // 设置不可抢占
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); // 检查mutex 需要的条件
if (__mutex_trylock(lock) || // 尝试上lock
mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { // 尝试上乐观锁
/* got the lock, yay! */
lock_acquired(&lock->dep_map, ip); // 上lock
if (use_ww_ctx && ww_ctx) // ww_mutex_lock时
ww_mutex_set_context_fastpath(ww, ww_ctx); // 设置上下文path
preempt_enable(); // 解除不可抢占
return 0;
}
spin_lock(&lock->wait_lock); // 对等待队列上自旋锁
/*
* After waiting to acquire the wait_lock, try again.
*/
if (__mutex_trylock(lock)) { // 那再试试呗 hhh
if (use_ww_ctx && ww_ctx)
__ww_mutex_check_waiters(lock, ww_ctx);
goto skip_wait;
}
debug_mutex_lock_common(lock, &waiter); // 掉一下debug模式下mutet_lock_common
lock_contended(&lock->dep_map, ip); // 去等锁
if (!use_ww_ctx) { // mutex_lock时候
/* add waiting tasks to the end of the waitqueue (FIFO): */
__mutex_add_waiter(lock, &waiter, &lock->wait_list); // 加到wait_queue
#ifdef CONFIG_DEBUG_MUTEXES
waiter.ww_ctx = MUTEX_POISON_WW_CTX;
#endif
} else {
/*
* Add in stamp order, waking up waiters that must kill
* themselves.
*/
ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); // 加到ww_mutex的wait_queue
if (ret)
goto err_early_kill;
waiter.ww_ctx = ww_ctx;
}
waiter.task = current;
set_current_state(state); // 设置state
for (;;) { // 做了一个自旋操作 retry lock
/*
* Once we hold wait_lock, we're serialized against
* mutex_unlock() handing the lock off to us, do a trylock
* before testing the error conditions to make sure we pick up
* the handoff.
*/
if (__mutex_trylock(lock)) // 等到了
goto acquired;
/*
* Check for signals and kill conditions while holding
* wait_lock. This ensures the lock cancellation is ordered
* against mutex_unlock() and wake-ups do not go missing.
*/
if (unlikely(signal_pending_state(state, current))) { // if state不对
ret = -EINTR;
goto err;
}
if (use_ww_ctx && ww_ctx) { // 如果是ww_mutex 且 wait_queue 有需要被kill掉的
ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
if (ret)
goto err;
}
spin_unlock(&lock->wait_lock); // 解自旋锁
schedule_preempt_disabled(); // 解除不可抢占
/*
* ww_mutex needs to always recheck its position since its waiter
* list is not FIFO ordered.
*/
if ((use_ww_ctx && ww_ctx) || !first) {
first = __mutex_waiter_is_first(lock, &waiter);
if (first)
__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
}
set_current_state(state); // update state
/*
* Here we order against unlock; we must either see it change
* state back to RUNNING and fall through the next schedule(),
* or we must see its unlock and acquire.
*/
if (__mutex_trylock(lock) || // 再试一次
(first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
break;
spin_lock(&lock->wait_lock);
}
spin_lock(&lock->wait_lock);
acquired:
__set_current_state(TASK_RUNNING);
if (use_ww_ctx && ww_ctx) {
/*
* Wound-Wait; we stole the lock (!first_waiter), check the
* waiters as anyone might want to wound us.
*/
if (!ww_ctx->is_wait_die &&
!__mutex_waiter_is_first(lock, &waiter))
__ww_mutex_check_waiters(lock, ww_ctx);
}
mutex_remove_waiter(lock, &waiter, current); // 从等待队列中remove
if (likely(list_empty(&lock->wait_list)))
__mutex_clear_flag(lock, MUTEX_FLAGS); // 清除flag
debug_mutex_free_waiter(&waiter);
skip_wait:
/* got the lock - cleanup and rejoice! */
lock_acquired(&lock->dep_map, ip);
if (use_ww_ctx && ww_ctx)
ww_mutex_lock_acquired(ww, ww_ctx);
spin_unlock(&lock->wait_lock); // cleanup
preempt_enable();
return 0;
err:
__set_current_state(TASK_RUNNING);
mutex_remove_waiter(lock, &waiter, current);
err_early_kill:
spin_unlock(&lock->wait_lock);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock->dep_map, 1, ip);
preempt_enable();
return ret;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
上面的__mutex_common
被mutex_lock
,ww_mutex_lock
两个函数复用
use_ww_ctx
&& ww_ctx
这两个变量就是用来判断到底是被哪个函数复用了
然后函数很多逻辑都是为了减少等待时间,用了多次自旋锁进行等待,直到多次尝试之后还不能上锁的时候才真正去 sleep 等待
这样的操作虽然可能会增大单次上锁时间,但相比交换上下文 Context 的代价肯定是很省了
自旋锁 spinlock
自旋锁,就是一种反复重试的锁,因为实际生产过程中,经常会有稍微等一等这个互斥量就解除的情况
所以自旋锁在工程中用处还是很大的,很多 java 程序都要写 spinlock
Spinlock 相关代码在<include/linux/spinlock_api_smp.h>
中
static inline int __raw_spin_trylock(raw_spinlock_t *lock)
{
preempt_disable(); // 设置不可抢占
if (do_raw_spin_trylock(lock)) { // 尝试获得自旋锁
spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); // 获得自旋锁
return 1;
}
preempt_enable(); // 接触不可抢占
return 0;
}
2
3
4
5
6
7
8
9
10
其中 spin_acquire 定义在<include/linux/lockdep.h>
#define spin_acquire(l, s, t, i) lock_acquire_exclusive(l, s, t, NULL, i)
#define lock_acquire_exclusive(l, s, t, n, i) lock_acquire(l, s, t, 0, 1, n, i)
2
而 lock_acquire()实现的代码在<kernel/locking/lockdep.c>
void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
int trylock, int read, int check,
struct lockdep_map *nest_lock, unsigned long ip)
{
unsigned long flags;
if (unlikely(current->lockdep_recursion)) // 如果锁的递归深度标志位!=0
return;
raw_local_irq_save(flags); // 刷一下flags到disk
check_flags(flags); // 检查flag
current->lockdep_recursion = 1; // 互斥
trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); // 追踪锁获得 打印日志
__lock_acquire(lock, subclass, trylock, read, check,
irqs_disabled_flags(flags), nest_lock, ip, 0, 0); // lock acquire
current->lockdep_recursion = 0; // 解除互斥
raw_local_irq_restore(flags); // 再刷一下flags
}
EXPORT_SYMBOL_GPL(lock_acquire);
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
然后具体实现的时候,调用到__lock_acquire()
static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
int trylock, int read, int check, int hardirqs_off,
struct lockdep_map *nest_lock, unsigned long ip,
int references, int pin_count)
{
struct task_struct *curr = current;
struct lock_class *class = NULL;
struct held_lock *hlock;
unsigned int depth;
int chain_head = 0;
int class_idx;
u64 chain_key;
if (subclass < NR_LOCKDEP_CACHING_CLASSES)
class = lock->class_cache[subclass]; // 找到cache
/*
* Not cached?
*/
if (unlikely(!class)) {
class = register_lock_class(lock, subclass, 0); // 注册lock
if (!class)
return 0;
}
atomic_inc((atomic_t *)&class->ops); // 原子操作获得class 操作符
if (very_verbose(class)) {
printk("\nacquire class [%px] %s", class->key, class->name);
if (class->name_version > 1)
printk(KERN_CONT "#%d", class->name_version);
printk(KERN_CONT "\n");
dump_stack();
}
depth = curr->lockdep_depth; // init depth
if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) // stack深度溢出
return 0;
class_idx = class - lock_classes + 1;
if (depth) {
hlock = curr->held_locks + depth - 1;
if (hlock->class_idx == class_idx && nest_lock) {
if (hlock->references) {
/*
* Check: unsigned int references:12, overflow.
*/
if (DEBUG_LOCKS_WARN_ON(hlock->references == (1 << 12)-1)) // 2^12 - 1
return 0;
hlock->references++;
} else {
hlock->references = 2;
}
return 1;
}
}
hlock = curr->held_locks + depth;
if (DEBUG_LOCKS_WARN_ON(!class))
return 0;
hlock->class_idx = class_idx; // 记录hlock信息
hlock->acquire_ip = ip;
hlock->instance = lock;
hlock->nest_lock = nest_lock;
hlock->irq_context = task_irq_context(curr);
hlock->trylock = trylock;
hlock->read = read;
hlock->check = check;
hlock->hardirqs_off = !!hardirqs_off;
hlock->references = references;
#ifdef CONFIG_LOCK_STAT
hlock->waittime_stamp = 0;
hlock->holdtime_stamp = lockstat_clock();
#endif
hlock->pin_count = pin_count;
if (check && !mark_irqflags(curr, hlock))
return 0;
/* mark it as used: */
if (!mark_lock(curr, hlock, LOCK_USED))
return 0;
if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS)) // 又溢出了
return 0;
chain_key = curr->curr_chain_key;
if (!depth) {
/*
* How can we have a chain hash when we ain't got no keys?!
*/
if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
return 0;
chain_head = 1;
}
hlock->prev_chain_key = chain_key;
if (separate_irq_context(curr, hlock)) {
chain_key = 0;
chain_head = 1;
}
chain_key = iterate_chain_key(chain_key, class_idx);
curr->curr_chain_key = chain_key;
curr->lockdep_depth++;
check_chain_key(curr);
return 1;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
__lock_acquire()
被spin_lock
和 mutex_lock
两个 class 调用
实际上它的操作对象不是对单一 class 加锁,是对一个锁类的加锁
这里为了降低 lockdep 的搜索消耗,用了一个 cache
对于那些反复加放锁的部分有不小的性能上的提升
读写锁rwlock
读写锁的主要目的就是实现某一种状态的并发性
条件变量 Condition
条件变量则是为了实现线程的批处理,一个个 batch 执行,定义了单个唤醒 & 广播唤醒两种方式
屏障 barrier
屏障的作用就很像两阶段锁协议,第一阶段只能等待,第二阶段只能运行
当未达到屏障约定的上限时,通过条件变量实现进入 wait_queue
当达到屏障上限的时候,通过广播一次性唤醒