Ali Test
No.1
A
本题有两种优惠券活动,分别为每满60-5
,满299-60
.
对250元的耳机而言,如果不凑单,则优惠4×5=20元,实际花费230元
对600元的音箱而言,如果不凑单,则优惠10×5+60=110元,实际花费490元
对于一起购买音箱+耳机,如果不凑单,则优惠14×5+60=130元,实际花费720元
首先,一起分开购买比一起购买划算,因为对于优惠力度更大的299-60,单独购买可能可以使用2次,一起购买只能使用一次。
$\alpha$
对于,耳机而言,有:
\begin{equation} \begin{aligned} &\min S_e \\ & \begin{array}{r@{\quad}l@{}l@{\quad}l} s.t.& S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-30×sign(S_{eo}-299)-30\\ &S_{eo}\ge250 \end{array} \end{aligned} \end{equation}
- when
$S_{eo}\in[240,299)$
,$S_e=S_{eo}-20$
,故在$S_{eo}=250$
时取到最小值$S_e=230$
- when
$S_{eo}\in[299,299]$
,$S_e=S_{eo}-80$
,故在$S_{eo}=299$
时取到最小值$S_e=219$
- when
$S_{eo}\in[300,+\infty]$
,$S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-60=\dfrac{11S_{eo}}{12}-60$
故在$S_{eo}=300$
时取到最小值$S_e=215$
且当故在$S_{eo}=300$
时取到最小值$S_e=215$
$\beta$
同理,对音箱而言,有:
\begin{equation} \begin{aligned} &\min S_v \\ & \begin{array}{r@{\quad}l@{}l@{\quad}l} s.t.& S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60\\ &S_{vo}\ge600 \end{array} \end{aligned} \end{equation}
when $S_{vo}\in[600,+\infty]$
,$S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60=\dfrac{11S_{vo}}{12}-60$
故在$S_{vo}=600$
时取到最小值$S_v=490$
综上所述,总花费=215+490=705元
B
B.1
当至少一项比A店优惠
- 若耳机更优惠,则需要
$S_{be}\le214$
$S_{be}=S_{beo}-x-30×sign(S_{eo}-299)-30$
- when
$S_{beo}\in[250,299]$
,$S_{be}=S_{beo}-x$
,故在$S_{beo}=250$
时取到最小值$S_{be}=250-x$
- when
$S_{beo}\in[299,+\infty]$
,$S_{be}=S_{beo}-x-60$
,故在$S_{beo}=299$
时取到最小值$S_{be}=239-x$
- when
- 故
$min(S_{be})=239-x$
, so,$x\ge25$
- 若音箱更优惠,则需要
$S_{bv} \le 489$
$S_{bv}=S_{bvo}-x-60$
- when
$S_{bvo}\in[600,+\infty]$
,$S_{bv}=S_{bvo}-x-60$
,故在$S_{bvo}=600$
时取到最小值$S_{be}540-x$
- when
- 故
$min(S_{bv})=540-x$
, so,$x\ge51$
故,综上所述当 $x\ge25$时,B店至少有一样产品会比A店便宜
B.2
两项合买的总金额比A店便宜
在当前问题中,仍然是分开购买比一起购买优惠
故,根据B.1中分析所得,$min(S_{be})=239-x$,$min(S_{bv})=540-x$
得到$min(S_{b})=779-2x$, so $x\ge37.5$
C
C.1
因为计算盈利率,假设$p_1\ge c_1$,$p_2\ge c_2$
在分析中假定售价$p_1$为定值,则
$r_1=P(p_1\le S_1)×(p_1-c_1)=\dfrac{u_1-p_1}{u_1}×(p_1-c_1)$
所以当$p_1^*=\dfrac{u_1+c_1}{2}$
时利润$r_1$最大为$r_1^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1}$
同理当$p_2^*=\dfrac{u_2+c_2}{2}$
时利润$r_2$最大为$r_2^*=\dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2}$
C.2
因为$S_1,S_2$为独立同分布,则$S=S_1+S_2$
故求得$S$的概率密度,从而求得$r_{12}$
$r_{12}=\begin{equation} \left\{ \begin{array}{} \dfrac{1}{2u_1u_2}(u_1+u_2-p_{12})^2(p_{12}-c_{12}), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ \dfrac{2u_1u_2-p_{12}^2+(p_{12}-min(u_1, u_2))^2}{2u_1u_2}(p_{12}-c_{12}), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ \dfrac{2u_1u_2-p_{12}^2}{2u_1u_2}(p_{12}-c_{12}), & c_{12}\le p_{12}\le min(u_1, u_2)\\ \end{array} \right. \end{equation}$
则$r_{12}’=\begin{equation} \left\{ \begin{array}{} k_1(p_{12}-(u_1+u_2))(3p_{12}-(2c_{12}+u_1+u_2)), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ k_2(-4p_{12}+2c_{12}+2max(u_1, u_2)+min(u_1,u_2)), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ k_3(-3p_{12}^2+2p_{12}c_{12}+2u_1u_2), & c_{12} \le p_{12}\le min(u_1, u_2)\\ \end{array} \right. \end{equation}$
可以看出函数$r_{12}$呈现w
形趋势,故在$\dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4},\dfrac{2c_{12}+u_1+u_2}{3}$两处可能取到最大值
因为$u_1, u_2$地位相同,不妨设$u_1<u_2$
- when
$p_{12} = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}$
,$r_{12} = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}$
- when
$p_{12} = \dfrac{2c_{12}+u_1+u_2}{3}$
,$r_{12} = \dfrac{2(u_1+u_2-c_{12})^3}{27u_1u_2}$
得到$p_{12}^* = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}$, $r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}$
C.3
\begin{equation} r_{total}= r_1^*+r_2^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1} + \dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2} \end{equation}
\begin{equation} r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2} \end{equation}
单卖和捆绑销售 利润随着$u_1,u_2,c_{12}$等发生改变